Connections between the Support and Linear Independence of Refinable Distributions

David Ruch* and Jianzhong Wang*
Department of Mathematics, Sam Houston State University, Huntsville, Texas 77341
Communicated by Rong-Qing Jia

Received June 10, 1996; accepted in revised form March 15, 1997

Abstract

The purpose of this paper is to study the relationships between the support of a refinable distribution ϕ and the global and local linear independence of the integer translates of ϕ. It has been shown elsewhere that a compactly supported distribution ϕ has globally independent integer translates if and only if ϕ has minimal convex support. However, such a distribution may have "holes" in its support. By insisting that $\phi \in L^{2}(\mathbb{R})$ and generates a multiresolution analysis, Lemarié and Malgouyres have ensured that no such holes can occur. In this article we generalize this result to refinable distributions. We also give a result on the local linear independence of the integer translates of ϕ. We work with integer dilation factor $N \geqslant 2$ throughout this paper. © 1998 Academic Press

1. INTRODUCTION AND BASIC CONCEPTS

This paper investigates the support of a refinable distribution ϕ and the global and local linear independence of the integer translates of ϕ. These ideas are fundamental in wavelet theory and have been studied considerably elsewhere (e.g., $[3,6,11,7,9])$. We say that a distribution ϕ is refinable with dilation factor $N \geqslant 2$ if there exist scalars p_{k} for which ϕ satisfies

$$
\begin{equation*}
\phi(x)=\sum_{k \in \mathbb{Z}} p_{k} \phi(N x-k) . \tag{1}
\end{equation*}
$$

We use the term refinable rather than scaling distribution to emphasize that we do not assume that ϕ is an L^{p} function; ϕ need not generate a multiresolution analysis (MRA) for our results (see [4] for a detailed discussion of MRAs). We will assume throughout that ϕ is compactly supported; see [5] for a discussion of this condition.

[^0]Deslauriers and Dubuc [6] showed that if ϕ is a refinable, compactly supported distribution and $p_{k}=0$ for $k<0$ and for $k>M$ in (1) then ϕ has its support in $[0, M /(N-1)]$. Throughout this paper, we say that the convex support of ϕ is the closure of the convex hull of $\operatorname{supp}(\phi)$. For $N=2$, Chui and Wang [3] have shown that the convex support of ϕ is [$0, M /(N-1)]$, and their proof is easily generalized to the case $N>2$.

It has been shown that the convex support of a compactly supported distribution ϕ is related to the linear independence of the integer translates of ϕ. Before going on, let us make some of our terminology more precise. Throughout this paper, we denote the set of integer translates of ϕ by

$$
\begin{equation*}
T_{\phi}=\{\phi(\cdot-n)\}_{n \in \mathbb{Z}} . \tag{2}
\end{equation*}
$$

We say that T_{ϕ} is globally linearly independent (GLI) if $\sum_{n \in \mathbb{Z}} c_{n} \phi(\cdot-n)=0$ and $c_{n} \in \mathbb{C}$ implies that $c_{n}=0 \forall n$. This condition is also referred to as "algebraically linearly independent" by some authors.

We also need to define the concept of "support" more carefully, since it has been used in a variety of ways in the literature. For $\varphi \in \mathscr{D}(\mathbb{R})$, the space of test functions (compactly supported C^{∞}-functions), we define the support of φ in the usual way, as the closure of $\{x \in \mathbb{R}: \varphi(x) \neq 0\}$. For distributions, we use the following standard definition of support (see, e.g., [13]). Recall that $\mathscr{D}^{\prime}(\mathbb{R})$, the dual of $\mathscr{D}(\mathbb{R})$, is the space of Schwartz distributions.

Definition 1. Let $f \in \mathscr{D}^{\prime}(\mathbb{R}), W$ an open subset of \mathbb{R}.

1. We say f vanishes on W if $\langle f, \varphi\rangle=0$ for all test functions $\varphi \in \mathscr{D}(W)$.
2. Let U be the union of all open sets $W \subset \mathbb{R}$ on which f vanishes. We define the support of f by

$$
\operatorname{supp} f=U^{c},
$$

the complement of U in \mathbb{R}.
3. We say f is of minimal support in a space S if $f \neq 0$ and $m(\operatorname{supp} f)$ $\leqslant m(\operatorname{supp} g)$ for all nonzero $g \in S$, where m denotes Lebesgue measure.

Note that if f is a continuous function, then the support of f is the closure of $\{x \in \mathbb{R}: f(x) \neq 0\}$, which coincides with Definition 1. Also note that it is possible for the support of f to have "holes" in it.

The following can easily be deduced from Result 3.2 of Ron in [12].

Theorem 2. Let ϕ be a compactly supported distribution. A distribution f in the principal shift-invariant space $S=\operatorname{span} T_{\phi}$ has minimal convex support if and only if T_{f} is GLI.

When the generator of space S is not minimally supported, Jia has provided in Theorem 5.1 of [8] a method to find the minimally convex supported refinable function that generates S (the proof is for dilation factor $N=2$, but the proof is straightforward for $N>2$). For greater clarity, we will tend to speak in terms of the GLI of T_{ϕ} rather than the minimal convex support of ϕ.

Two natural questions to ask at this point are whether the support of ϕ could actually have any "holes" in it, and what conditions can be placed on ϕ to ensure that no such holes exist. Certainly, it is not hard to conjure up an example of a compactly supported, refinable function which has as its support the union of disjoint closed intervals, e.g., $\phi(x)=\chi_{[0,1)}+\chi_{[2,3)}$. However, observe that T_{ϕ} is not GLI for this ϕ. Lemarié and Malgouyres provide a nice proof of the following result for L^{2} functions and dilation factor $N=2$ in [11].

Theorem 3. Suppose $\phi \in L^{2}(\mathbb{R})$ has minimal (and compact) convex support in span T_{ϕ} and generates a (two-scale) multiresolution analysis. Then

1. the support of ϕ is an interval, and
2. the restrictions to $[0,1]$ of the integer translates of ϕ must be linearly independent.

A few remarks are in order. Since the multiresolution analysis (MRA) hypothesis is crucial in their proof, it is not obvious that the result holds for a distribution ϕ, even for dilation factor $N=2$. If $N>2$, then there are more than two wavelet generators implied by the multiresolution analysis (see [4]). This would certainly complicate the approach of Lemarié and Malgouyres.

We also note that, in general, the second conclusion of Theorem 3 is weaker than obtaining local linear independence on arbitrary intervals. To be precise, we follow Goodman and Lee [7] and say that T_{ϕ} is locally linearly independent on a nontrivial interval (a, b) if $\sum_{k \in \mathbb{Z}} d_{k} \phi(\cdot-k)=0$ on (a, b) and $d_{k} \in \mathbb{C}$ implies that $d_{k}=0$ for all k for which $\phi(\cdot-k)$ is not identically zero on (a, b). When T_{ϕ} is locally linearly independent on arbitrary intervals, we simply say that T_{ϕ} is locally linearly independent. It is obvious that if T_{ϕ} is locally linearly independent, then it is also GLI, but the converse is not true. To further illustrate the connections between the concepts discussed here, consider the example

$$
\varphi(t)=t \chi_{[0,1)}(t)+\chi_{[1,4)}(t)
$$

Note that T_{φ} is GLI but not locally linearly independent. Also observe that φ does not have minimal support in span T_{φ}. The function $\psi(x)=\varphi(x)-$ $\varphi(x-1)$ has minimal support in span T_{φ}, but its support has a "hole" in it, and T_{ψ} is not GLI. However, φ in this example is not refinable. We shall see that these types of linear independence of T_{ϕ} prove to be equivalent when ϕ is refinable and compactly supported.

There are two goals of this paper. The first is to show that the $\phi \in L^{2}(\mathbb{R})$ and MRA hypotheses in Theorem 3 can be replaced by requiring ϕ to be a refinable and compactly supported distribution. Second, we will prove this for any integer dilation factor $N \geqslant 2$.

We are now in a position to state our main theorem.
Theorem 4. Suppose that $\phi \in \mathscr{D}^{\prime}(\mathbb{R})$ is a refinable, compactly supported distribution satisfying

$$
\begin{equation*}
\phi(x)=\sum_{j=0}^{M} p_{j} \phi(N x-j), \quad p_{0} p_{M} \neq 0, \tag{3}
\end{equation*}
$$

and such that $T_{\phi}=\{\phi(\cdot-n)\}_{n \in \mathbb{Z}}$ is GLI. Then

1. $\operatorname{supp}(\phi)=[0, M /(N-1)]$, and
2. T_{ϕ} is locally linearly independent.

The rest of the paper is outlined as follows. In Section 2 we give some results crucial for proving Theorem 4 in the case $N>2$. In Section 3 we state and prove a chain of lemmata that leads to a proof of Theorem 4.

2. AN INTERPOLATION RESULT

In this section, we shall prove an interpolation result for a system of generalized exponential functions. For this purpose we first introduce a result for generalized Vandermonde matrix.

For $z \in \mathbb{C}$, let $X(z)=\left(1, z, \ldots, z^{n-1}\right)^{T}$ be an n-dimensional vector, and let $X^{(j)}(z)$ be its j th derivative. Assume that $\left\{\lambda_{1}, \ldots, \lambda_{s}\right\} \in \mathbb{C}$ and $\left\{n_{1}, \ldots, n_{s}\right\} \in \mathbb{N}$, with $\sum_{j=1}^{s} n_{j}=n$. For $1 \leqslant j \leqslant s$, define $n \times\left(n_{j}+1\right)$ matrices U_{j} by

$$
\begin{aligned}
U_{i} & =\left[X\left(\lambda_{1}\right), \ldots, X^{\left(n_{j}\right)}\left(\lambda_{1}\right)\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\lambda_{i} & 1 & \cdots & 0 \\
\lambda_{i}^{2} & 2 \lambda_{i} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
\lambda_{i}^{n-1} & (n-1) \lambda_{i}^{n-2} & \cdots & (n-1) \cdots\left(n-n_{j}\right) \lambda_{i}^{n-1-n_{j}}
\end{array}\right] .
\end{aligned}
$$

Then the $n \times n$ matrix

$$
\begin{equation*}
\mathbf{U}=\left[U_{1}, \ldots, U_{s}\right] \tag{4}
\end{equation*}
$$

is called a generalized Vandermonde matrix.
The following result for a Vandermonde matrix is known (see [10]).
Lemma 5. The generalized Vandermonde matrix \mathbf{U} in (4) is nonsingular if and only if $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$.

We also need the following.
Lemma 6. For $1 \leqslant k$, and $j \in \mathbb{Z}$, define the integers p_{k}^{j} by the induction that $p_{1}^{j}=\delta_{1 j}, j \in \mathbb{Z}$, and $p_{k}^{j}=p_{k-1}^{j-1}+j p_{k-1}^{j}$. Let $P(m, j)=m(m-1) \cdots$ $(m+1-j), 1 \leqslant j \leqslant m$. Then

$$
\begin{equation*}
m^{k}=\sum_{j=1}^{k} P(m, j) p_{k}^{j} . \tag{5}
\end{equation*}
$$

Proof. We prove the lemma by mathematical induction. When $k=1$, (5) is trivial. Under the assumption that (5) is true for $k-1$, we prove it is true for k. In fact, by $p_{k}^{1}=1, p_{k}^{k}=1$, and $p_{k}^{l}=0, l \leqslant 0$ or $l>k$, we have

$$
\begin{aligned}
\sum_{j=1}^{k} P(m, j) p_{k}^{j} & =\sum_{j=1}^{k} P(m, j)\left(p_{k-1}^{j-1}+j p_{k-1}^{j}\right) \\
& =\sum_{j=1}^{k} P(m, j-1)(m+1-j) p_{k-1}^{j-1}+\sum_{j=1}^{k} P(m, j) j p_{k-1}^{j} \\
& =\sum_{j=1}^{k-1} P(m, j)(m-j) p_{k-1}^{j}+\sum_{j=1}^{k-1} P(m, j) j p_{k-1}^{j} \\
& =m \sum_{j=1}^{k-1} P(m, j) p_{k-1}^{j} \\
& =m^{k}
\end{aligned}
$$

The lemma is proved.
Lemma 7. For $1 \leqslant i \leqslant s$, define $n \times\left(n_{i}+1\right)$ matrices V_{i} by

$$
V_{i}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\lambda_{i} & \lambda_{i} & \cdots & \lambda_{i} \\
\lambda_{i}^{2} & 2 \lambda_{i}^{2} & \cdots & (2)^{n_{i}} \lambda_{i}^{2} \\
\vdots & \vdots & & \vdots \\
\lambda_{i}^{n-1} & (n-1) \lambda_{i}^{n-1} & \cdots & (n-1)^{n_{i}} \lambda_{i}^{n-1}
\end{array}\right],
$$

where $n=\sum_{i=1}^{s}\left(n_{i}+1\right)$. The matrix

$$
\begin{equation*}
\mathbf{V}=\left[V_{1}, \ldots, V_{s}\right] \tag{6}
\end{equation*}
$$

is nonsingular if and only if

$$
\begin{equation*}
\lambda_{i} \neq 0 \forall i, \quad \text { and } \quad \lambda_{i} \neq \lambda_{j} \quad \text { for } \quad i \neq j \tag{7}
\end{equation*}
$$

Proof. Denote the k th column in V_{i} by \mathbf{v}^{k} and the j th column in U_{i} by \mathbf{u}^{j}. By Lemma $6, \mathbf{v}_{k}=\sum_{j=1}^{k} p_{k}^{j} \lambda^{j} \mathbf{u}_{j}, 1 \leqslant k \leqslant n_{i}$. Therefore, $\operatorname{det} \mathbf{V}=$ $\prod_{i=1}^{s} \lambda_{i}^{\left(n_{i}\left(n_{i}+1\right)\right) / 2} \operatorname{det} \mathbf{U}$. By Lemma 4, we obtain the sufficient and necessary condition (7).

Corollary 8. Let $\mathscr{S}=\operatorname{span}\left\{\left(\lambda_{1}\right)^{x}, x\left(\lambda_{1}\right)^{x}, \ldots, x^{n_{1}-1}\left(\lambda_{1}\right)^{x}, \ldots, \lambda_{s}^{x}, x\left(\lambda_{s}\right)^{x}, \ldots\right.$, $\left.x^{n_{s}-1}\left(\lambda_{s}\right)^{x}\right\}$, where $\lambda_{i} \neq 0 \forall i, \lambda_{i} \neq \lambda_{j}$ for $i \neq j$, and $n=\sum_{i=1}^{s} n_{i}$. If $f \in \mathscr{S}$ and $f(k)=0$ for $k=0, \ldots, n-1$, then $f(x)=0$ for all $x \in \mathbb{R}$.

Proof. Let $f(x)=\sum_{i=1}^{s} \sum_{t=0}^{n_{i}-1} a_{i t} x^{t}\left(\lambda_{i}\right)^{x} \in \mathscr{S}$. Define a by

$$
\mathbf{a}=\left(a_{10}, \ldots, a_{1 n_{1}-1}, \ldots, a_{s 0}, \ldots, a_{s n_{s}-1}\right)^{T}
$$

Then $f(k)=0$ for $k=0, \ldots, n-1$ can be rewritten as $\mathbf{V a}=\mathbf{0}$ where \mathbf{V} is defined in (6). From Lemma 7 we know that \mathbf{V} is nonsingular, whence $\mathbf{a}=\mathbf{0}$.

The following "interpolation" proposition is a key ingredient in the proof of Lemma 15 .

Proposition 9. Let

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{s} \sum_{t=0}^{n_{i}-1} a_{i t} x^{t}\left(\lambda_{i}\right)^{x} \\
& g(x)=\sum_{i=1}^{r} \sum_{t=0}^{m_{i}-1} b_{i t} x^{t}\left(\mu_{i}\right)^{x}
\end{aligned}
$$

Set $p=\sum_{i=1}^{s} n_{i}, q=\sum_{i=1}^{r} m_{i}$. Assume that $p, q \in \mathbb{N}, p \geqslant q$,

$$
\begin{equation*}
\lambda_{i}, \mu_{i} \neq 0 \quad \forall i, \quad \text { and } \quad \lambda_{i} \neq \lambda_{j}, \quad \mu_{i} \neq \mu_{j} \quad \text { for } \quad i \neq j \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
f(k)=g(k) \quad \text { for } \quad k=0, \ldots, 2 p-1 \tag{9}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f(x)=g(x) \quad \forall x \tag{10}
\end{equation*}
$$

Proof. $\quad(\Leftarrow)$ This direction is trivial.

$$
(\Rightarrow) \quad \text { Define } C(x) \text { and } \mathscr{S} \text { by }
$$

$$
\begin{equation*}
C(x)=\sum_{i=1}^{s} \sum_{t=0}^{n_{i}-1} a_{i t} x^{t}\left(\lambda_{i}\right)^{x}-\sum_{i=1}^{r} \sum_{t=0}^{m_{i}-1} b_{i t} x^{t}\left(\mu_{i}\right)^{x} \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
\mathscr{S}=\operatorname{span}\left\{\lambda_{1}^{x}, \ldots, x^{n_{1}-1} \lambda_{1}^{x}, \ldots, \lambda_{s}^{x}, \ldots, x^{n_{s}-1} \lambda_{s}\right. \\
\left.\mu_{1}^{x}, \ldots, x^{m_{1}-1} \mu_{1}^{x}, \ldots, \mu_{r}^{x}, \ldots, x^{m_{r}-1} \mu_{r}^{x}\right\} . \tag{12}
\end{align*}
$$

It is clear that $\operatorname{dim} \mathscr{S} \leqslant p+q \leqslant 2 p$. Now $C(x) \in \mathscr{S}$ and $C(k)=0$ for $k=0, \ldots, 2 p-1$, so Corollary 8 yields $C(x)=0$ for all x. The conclusion (10) follows.

3. SOME BASIC LEMMAS

To prove Theorem 4, we shall develop a sequence of lemmata in this section. A crucial tool for this approach is a local dual basis for span T_{ϕ}. The existence of this basis is ensured by the following theorem due to Ben-Artzi and Ron [1]. Zhao [14] followed this work and gave an alternate proof of (10). According to [1, 14], an indexed family Φ of distributions is called a locally finite collection if for any test function $f \in \mathscr{D}(\mathbb{R}),\langle\varphi, f\rangle=0$ for all but finitely many $\varphi \in \Phi$.

Theorem 10. Let $\Phi=\left\{\phi_{i}\right\}_{i \in \mathbb{Z}}$ be a locally finite collection of GLI compactly supported distributions in $\mathscr{D}^{\prime}(\mathbb{R})$. Then each functional λ_{i} in the algebraic dual basis $\Lambda=\left\{\lambda_{i}\right\}_{i \in \mathbb{Z}}$ of Φ is local. Precisely, for every $i \in \mathbb{Z}$ there exists a compact $B_{i} \subset \mathbb{R}$ such that $\lambda_{i}(f)=0$ whenever supp $f \cap B_{i}=\varnothing$ and $f \in \operatorname{span} \Phi$.

These sets B_{i} suggest the following definition of the support of the functionals λ_{i}.

Definition 11. Let Φ and Λ be given as in Theorem 10 with $\lambda \in \Lambda$, and suppose W is an open subset of \mathbb{R}.

1. We say λ vanishes on W with respect to Φ if $\langle\lambda, \phi\rangle=0$ for all $\phi \in \operatorname{span} \Phi$ with $m(\operatorname{supp} \phi \cap W)>0$.
2. Let U be the union of all open sets $W \subset \mathbb{R}$ on which λ vanishes with respect to Φ. We define the local support of λ by

Lsupp $\lambda=U^{c}$.

For $\lambda \in \Lambda$ and $i, k \in \mathbb{Z}$ we define $\lambda(\cdot-i)$, the i th shift of λ, by

$$
\left\langle\lambda(\cdot-i), \phi_{k}\right\rangle=\left\langle\lambda, \phi_{k+i}\right\rangle,
$$

and $\lambda\left(N^{j}.\right)$, the j th dilation of λ, by

$$
\left\langle\lambda\left(N^{j} \cdot\right), \phi_{k}\right\rangle=\left\langle\lambda, \phi_{k}\left(N^{-j} .\right)\right\rangle .
$$

The following corollary will be quite useful.

Corollary 12. Suppose $\phi \in \mathscr{D}^{\prime}(\mathbb{R})$ is compactly supported. Let Φ and Λ be given as in Theorem 10 with $\phi_{i}(\cdot)=\phi(\cdot-i) \forall i \in \mathbb{Z}$. Then each $\lambda_{i} \in \Lambda$ is of the form $\lambda_{i}=\lambda_{0}(\cdot-i)$. Moreover, there exists an interval $[\alpha, \beta]$ for which Lsupp $\lambda_{0} \subset[\alpha, \beta]$.

We now set $\lambda_{0}=\phi^{*}$ and write $\phi_{k j}(x)=\phi\left(N^{k} x-j\right)$ and $\phi_{k j}^{*}(x)=$ $\phi^{*}\left(N^{k} x-j\right)$. It is clear that $\left\{\phi_{k j}^{*}\right\}$ is the dual of $\left\{\phi_{k j}\right\}$. Note that $\operatorname{Lsupp}\left(\phi_{k j}^{*}\right) \subset\left[N^{-k}(\alpha+j), N^{-k}(\beta+j)\right]$. Define

$$
V_{k}=\operatorname{span}\left\{\phi_{k j}\right\}_{j \in \mathbb{Z}} .
$$

If compactly supported ϕ satisfies (3), we have

$$
\cdots \subset V_{0} \subset V_{1} \subset \cdots,
$$

and it is known (see, e.g., [6]) that

$$
\operatorname{supp}(\phi) \subset\left[0, \frac{M}{N-1}\right] .
$$

Lemma 13. Suppose that ϕ is compactly supported and refinable, and that T_{ϕ} is GLI. If $f \in V_{0}$ and $f(x)=0$ on $[a, b]$, then there exists an integer $k \geqslant 0$ for which

$$
f \chi_{(-\infty, a]} \in V_{k} \quad \text { and } \quad f \chi_{[b, \infty)} \in V_{k} .
$$

Proof. Since ϕ is compactly supported and T_{ϕ} is GLI, we may assume there is some $M \in \mathbb{N}$ for which ϕ satisfies (3). We may also assume WLOG that there is an $R \in \mathbb{N}$ for which $R \geqslant M /(N-1)$ and $\operatorname{Lsupp}\left(\phi^{*}\right) \subset[0, R]$. Choose k so that $N^{-k}(3 R+1)<b-a$. Let L denote the integer for which $N^{-k}(L-1)<a \leqslant N^{-k} L$, so

$$
\begin{equation*}
a \leqslant N^{-k} L<N^{-k}(L+3 R)<b . \tag{13}
\end{equation*}
$$

Then from $\operatorname{Lsupp}\left(\phi_{k j}^{*}\right) \subset\left[N^{-k} j, N^{-k}(j+R)\right]$ we have

$$
\begin{equation*}
\operatorname{Lsupp}\left(\phi_{k j}^{*}\right) \subset[a, b], \quad j=L, \ldots, L+2 R . \tag{14}
\end{equation*}
$$

Since ϕ is refinable, $V_{0} \subset V_{k}$ so we can expand f as

$$
f=\sum_{j \in \mathbb{Z}} c_{k j} \phi_{k j} .
$$

Since $f(x)=0$ on [a,b], from (14) we have

$$
c_{k l}=\sum_{j \in \mathbb{Z}} c_{k j} \delta_{j l}=\phi_{k l}^{*}(f)=0
$$

for $l=L+R, \ldots, L+2 R$. Thus $f=f_{1}+f_{2}$ where $f_{1}=\sum_{j<L+R} c_{k j} \phi_{k j}$ and $f_{2}=\sum_{j>L+2 R} c_{k j} \phi_{k j}$ are both in V_{k}. Using $\operatorname{supp}(\phi) \subset[0, M /(N-1)]$, observe that $\operatorname{supp}\left(f_{1}\right) \subset\left(-\infty, N^{-k}(M /(N-1)+L)\right] \subset\left(-\infty, N^{-k}(R+L)\right]$ and $\operatorname{supp}\left(f_{2}\right) \subset\left[N^{-k}(L+2 R), \infty\right)$. Thus $\operatorname{supp}\left(f_{1}\right) \cap \operatorname{supp}\left(f_{2}\right)=\varnothing$. From (13) we see that

$$
f \chi_{(-\infty, a]}=f_{1} \quad \text { and } \quad f \chi_{(b,+\infty]}=f_{2},
$$

which finishes the proof.
Define the symbol of ϕ satisfying (3) in the usual way, by

$$
P(z)=\frac{1}{N} \sum_{j=0}^{M} p_{j} z^{j} .
$$

We may write $M=N L+w$ for some $w \in\{0, \ldots, N-1\}$. Define the polynomials

$$
\begin{equation*}
P_{j}(z)=p_{N L+j}+p_{N(L-1)+j} z+\cdots+p_{j} z^{L} \tag{15}
\end{equation*}
$$

where $p_{i}=0$ for $i>M$.
It is known that if dilation factor $N=2$ and T_{ϕ} is GLI, then the symbol of ϕ has no symmetric zeros (see, e.g., [9]). We next show this fact holds for $N \geqslant 2$ and use it to derive a property of the polynomials P_{j} in (15).

Lemma 14. If T_{ϕ} is GLI then

1. the symbol $P(z)$ of ϕ has no N-symmetric zeros, and therefore
2. the polynomials P_{j} in $(15), w-N+1 \leqslant j \leqslant w$, have no common zero $z_{0} \neq 0$.

Proof. For part 1, we employ the method of [2], and suppose for the sake of contradiction thet ϕ has N-symmetric zeros

$$
P\left(e^{-i((\omega+2 k \pi) / N)}\right)=0, \quad k=0, \ldots, N-1
$$

for some ω. In the transform domain, (3) becomes

$$
\hat{\phi}(\omega)=\frac{1}{N} P\left(e^{-i \omega / N}\right) \hat{\phi}\left(\frac{\omega}{N}\right) .
$$

Hence

$$
\begin{aligned}
\sum_{m \in \mathbb{Z}}|\hat{\phi}(\omega+2 m \pi)|^{2} & =\frac{1}{N} \sum_{m \in \mathbb{Z}}\left|P\left(e^{-i(\omega+2 m \pi) / N}\right)\right|^{2}\left|\hat{\phi}\left(\frac{\omega+2 m \pi}{N}\right)\right|^{2} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} \sum_{m \in \mathbb{Z}}\left|P\left(e^{-i(\omega+2 k \pi) / N}\right)\right|^{2}\left|\hat{\phi}\left(\frac{\omega+2 k \pi}{N}+2 m \pi\right)\right|^{2} \\
& =0
\end{aligned}
$$

which contradicts the GLI of T_{ϕ}.
For part 2, suppose for the sake of contradiction that the polynomials P_{j} in (15) have a common zero $z_{0} \neq 0$. Let $z=z_{0}^{-1 / N}$ denote any of the N roots of z_{0}^{-1}. Then

$$
N \cdot P(z)=\sum_{j=0}^{M} p_{j} z^{j}=\sum_{j} z^{N L+j} P_{j}\left(z^{-N}\right)=\sum_{j} z^{j} z_{0}^{-L} P_{j}\left(z_{0}\right)=0 .
$$

Hence $P(z)$ has N symmetric zeros, which contradicts part 1 .
For our next lemma, we must introduce some new notation. Recall that $M=N L+w$ for some L and $w \in\{0, \ldots, N-1\}$. Put

$$
x_{L}^{(0)}=-2 L-2+\frac{M}{N-1}
$$

and $x_{L}^{(k)}=N^{-k} x_{L}^{(0)}$.
Lemma 15. Suppose that $f \in V_{k-1}, f=0$ on $\left[x_{L}^{(k)}, N^{-k}\right]$, and

$$
\begin{equation*}
f \chi_{\left(-\infty, x_{L}^{(k)}\right]}, f \chi_{\left(N^{-k}, \infty\right]} \in V_{k} . \tag{16}
\end{equation*}
$$

Then $f=0$ on $\left[x_{L}^{(k-1)}, N^{-k+1}\right]$ and

$$
f \chi_{\left(-\infty, x_{L}^{(k)}\right]}, f \chi_{\left(N^{-k}, \infty\right]} \in V_{k-1} .
$$

Proof. Without loss of generality $k=1$. From (16) we have

$$
\begin{equation*}
f=\sum_{j \leqslant-n} c_{1 j} \phi_{1 j}+\sum_{j \geqslant 1} c_{1 j} \phi_{1 j}, \tag{17}
\end{equation*}
$$

where $n=2 L+2$. Now $f \in V_{0}$ implies that

$$
\begin{equation*}
f=\sum_{j \in \mathbb{Z}} c_{0 j} \phi_{0 j}=\sum_{j \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}} p_{j-N k} c_{0 k}\right) \phi_{1 j} \tag{18}
\end{equation*}
$$

and then

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}} p_{j-N k} c_{0 k}=0 \tag{19}
\end{equation*}
$$

for $j=-n+1, \ldots, 0$.
Let $\left(\lambda_{1}^{j}, n_{1}^{j}\right), \ldots,\left(\lambda_{s}^{j}, n_{s}^{j}\right)$ be the zeros (with multiplicities) of the polynomials $P_{j}(z)$ defined in (15) where $\sum_{i=1}^{s_{j}} n_{i}^{j} \leqslant L$ for $w-(N-1) \leqslant j \leqslant w$. From (19) and difference equation theory, there are scalars $a_{i t}^{j}$ for which

$$
\begin{equation*}
c_{0 k}=\sum_{i=1}^{s_{j}} \sum_{t=0}^{n_{i}^{j}-1} a_{i t}^{j} k^{t}\left(\lambda_{i}^{j}\right)^{k} \tag{20}
\end{equation*}
$$

for $k=-n+1, \ldots,-1$, and $j=w-N+1, \ldots, w$. Before continuing, we need the following.

Claim. $\quad c_{0 k}=0$ for $k=-n+1, \ldots,-1$.
Proof of Claim. From $\sum_{i=1}^{s_{j}} n_{i}^{j} \leqslant L$ we have $n-1=2 L+1 \geqslant 2 \sum_{i=1}^{s_{j}} n_{i}^{j}$. Also, for any u, v where $w-N+1 \leqslant u, v \leqslant w$ we have

$$
\sum_{i=1}^{s_{u}} \sum_{t=0}^{n_{i}^{u}-1} a_{i t}^{u} k^{t}\left(\lambda_{i}^{u}\right)^{k}=\sum_{i=1}^{s_{v}} \sum_{t=0}^{n_{i}^{v}-1} a_{i t}^{v} k^{t}\left(\lambda_{i}^{v}\right)^{k}
$$

for $k=-n+1, \ldots,-1$ from (20). Suppose for the sake of contradiction that not all the $c_{0 k}$ are zero. We may assume that $\lambda_{i}^{u} \neq 0$ for all u, i, and, for each pair (u, i), we may assume that $a_{i t}^{u} \neq 0$ for some t. Then by Proposition 9,

$$
\sum_{i=1}^{s_{u}} \sum_{t=0}^{n_{i}^{u}-1} a_{i t}^{u} x^{t}\left(\lambda_{i}^{u}\right)^{x}=\sum_{i=1}^{s_{v}} \sum_{t=0}^{n_{i}^{v}-1} a_{i t}^{v} x^{t}\left(\lambda_{i}^{v}\right)^{x}
$$

for all x. Hence $\lambda_{i}^{u}=\lambda_{i}^{v}$ and the polynomials (15), $w-(N-1) \leqslant j \leqslant w$, have a common zero. This contradicts Lemma 14. Thus we have $c_{0 k}=0$ for $k=-n+1, \ldots,-1$. This completes the proof of the claim.

Now from (18) we have

$$
f=\sum_{j \leqslant-n} c_{0 j} \phi_{0 j}+\sum_{j \geqslant 1} c_{0 j} \phi_{0 j},
$$

where

$$
\operatorname{supp}\left(\sum_{j \leqslant-n} c_{0 j} \phi_{0 j}\right) \subset\left(-\infty, x_{L}^{(0)}\right]
$$

and

$$
\operatorname{supp}\left(\sum_{j \geqslant 1} c_{0 j} \phi_{0 j}\right) \subset\left[N^{0}, \infty\right) .
$$

Hence

$$
f \chi_{\left(-\infty, x_{L}^{(1)}\right]}=f \chi_{\left(-\infty, x_{L}^{(0)}\right]} \in V_{0}
$$

and

$$
f \chi_{\left[N^{-1}, \infty\right)}=f \chi_{\left[N^{0}, \infty\right)} \in V_{0} .
$$

Lemma 16. If $f \in V_{0}$ and $f=0$ on some interval $[a, b]$, then

$$
f \chi_{[b, \infty)}, f \chi_{(-\infty, a]} \in V_{0} .
$$

Proof. Without loss of generality we assume that $a \leqslant 0$ and $b>0$. Choose k so that $a \leqslant x_{L}^{(k)}$ and $N^{-k} \leqslant b$. Now using Lemmas 13 and 15 and an inductive argument, we obtain the desired result.

We are finally ready for a proof of Theorem 4.
Proof of Theorem 4. Since compactly supported ϕ satisfies (3) and T_{ϕ} is GLI, Theorem 2 says that ϕ has minimal convex support in span T_{ϕ}.

1. As noted in the Introduction, Chui and Wang [3] have shown that the convex closure of $\operatorname{supp}(\phi)$ is $[0, M /(N-1)]$. We need only prove that there is no nontrivial interval $[a, b] \subset(0, M /(N-1))$ for which $\phi=0$ on $[a, b]$. Suppose for the sake of contradiction that such an interval [$a, b]$ exists. Then by Lemma 16, $\phi \chi_{(-\infty, a]} \in V_{0}$ and $\phi \chi_{(-\infty, a]}$ has shorter support than ϕ. This contradicts the minimal convex support of ϕ.
2. Let L denote the integer for which $L<M /(N-1) \leqslant L+1$. Suppose for the sake of contradiction that T_{ϕ} is not locally linearly independent on all nontrivial intervals. Then there exist scalars d_{k}, not all zero, and nontrivial interval (a, b) for which $g(x)=\sum_{k \in \mathbb{Z}} d_{k} \phi(x-k)=0$ on (a, b).

Shortening (a, b) and using an integer translate of g if necessary, we may assume $(a, b) \subset(L, L+1)$. Since $\operatorname{supp}(\phi)=[0, M /(N-1)]$ by part 1 ,

$$
\tilde{g}(x)=\sum_{k=0}^{L} d_{k} \phi(x-k)
$$

vanishes on (a, b). Note that $\operatorname{supp}(\tilde{g}) \subset[0, L+M /(N-1)]$. But then by Lemma 16,

$$
\tilde{g} \chi_{(-\infty, a]}, \tilde{g} \chi_{[b, \infty)} \in V_{0} .
$$

Hence one of these functions has support length less than $\frac{1}{2}(L+M /(N-1))$ $<M /(N-1)$. This contradicts the minimal convex support of ϕ.

The following corollary concerning minimal support is immediate.
Corollary 17. If ϕ is a refinable, compactly supported distribution and T_{ϕ} is GLI, then ϕ is minimally supported in span T_{ϕ} and $\operatorname{supp}(\phi)$ is an interval.

ACKNOWLEDGMENT

The authors would like to thank the referees for their helpful comments.

REFERENCES

1. A. Ben-Artzi and A. Ron, On the integer translates of a compactly supported function: Dual bases and linear projectors, SIAM J. Math. Anal. 21, No. 6 (1990), 1550-1562.
2. C. Chui and J. Wang, A general framework of compactly supported splines and wavelets, J. Approx. Theory 71, No. 3 (1992), 263-304.
3. C. Chui and J. Wang, A study of compactly supported scaling functions and wavelets, in "Wavelets, Images, and Surface Fitting" (P. Laurent, M. L. Méhauté, and L. L. Schumaker, Eds.), pp. 121-140, A. K. Peters, Wellesley, MA, 1994.
4. I. Daubechies, "Ten Lectures on Wavelets," SIAM CBMS, Vol. 61, Philadelphia, PA, 1992.
5. I. Daubechies and J. C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions, SIAM J. Math. Anal. 22 (1991), 1338-1410.
6. G. Deslauries and S. Dubuc, Interpolation dyadique, in "Fractals, dimensions non entières et applications" (G. Cherbit, Ed.), pp. 44-55, Masson, Paris, 1987.
7. T. N. T. Goodman and S. L. Lee, Wavelets of multiplicity r, Trans. Amer. Math. Soc. 342, No. 1 (1994), 307-324.
8. R. Q. Jia, Subdivision schemes in L_{p} spaces, Adv. Comput. Math. 3 (1995), 309-341.
9. R. Q. Jia and J. Wang, Stability and linear independence associated with wavelet decompositions, Proc. Amer. Math. Soc. 117, No. 4 (1993), 1115-1124.
10. S. Karlin, "Total Positivity," Stanford Univ. Press, Stanford, CA, 1968.
11. P. G. Lemarié and G. Malgouyres, Support des fonctions de base dans une analyse multirésolution, C.R. Acad. Sci. Paris Sér. I Math. 313 (1991), 377-380.
12. A. Ron, "Characterizations of Linear Independence and Stability of the Shifts of a Univariate Refinable Function in Terms of Its Refinement Mask," CMS Technical Report No. 93-3, Madison, WI, 1992.
13. C. Swartz, "An Introduction to Functional Analysis," Dekker, New York, 1992.
14. K. Zhao, Global linear independence and finitely supported dual bases, SIAM J. Math. Anal. 23 (1992), 1352-1355.

[^0]: * Both authors are partially supported by NSF Grant DMS-9503282.

