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The purpose of this paper is to study the relationships between the support of a
refinable distribution ¢ and the global and local linear independence of the integer
translates of ¢. It has been shown elsewhere that a compactly supported distri-
bution ¢ has globally independent integer translates if and only if ¢ has minimal
convex support. However, such a distribution may have “holes” in its support. By
insisting that ¢ e L%(R) and generates a multiresolution analysis, Lemarié¢ and
Malgouyres have ensured that no such holes can occur. In this article we generalize
this result to refinable distributions. We also give a result on the local linear inde-
pendence of the integer translates of ¢. We work with integer dilation factor N >2
throughout this paper. © 1998 Academic Press

1. INTRODUCTION AND BASIC CONCEPTS

This paper investigates the support of a refinable distribution ¢ and the
global and local linear independence of the integer translates of ¢. These
ideas are fundamental in wavelet theory and have been studied con-
siderably elsewhere (e.g., [3, 6, 11, 7, 9]). We say that a distribution ¢ is
refinable with dilation factor N>2 if there exist scalars p, for which ¢
satisfies

¢(x)= Y, prd(Nx—k). (1)

keZ

We use the term refinable rather than scaling distribution to emphasize that
we do not assume that ¢ is an L? function; ¢ need not generate a multi-
resolution analysis (MRA) for our results (see [4] for a detailed discussion
of MRAs). We will assume throughout that ¢ is compactly supported; see
[5] for a discussion of this condition.
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Deslauriers and Dubuc [6] showed that if ¢ is a refinable, compactly
supported distribution and p, =0 for kK <0 and for kK > M in (1) then ¢ has
its support in [0, M/(N —1)]. Throughout this paper, we say that the
convex support of ¢ is the closure of the convex hull of supp(¢4). For
N =2, Chui and Wang [3] have shown that the convex support of ¢ is
[0, M/(N—1)], and their proof is easily generalized to the case N > 2.

It has been shown that the convex support of a compactly supported
distribution ¢ is related to the linear independence of the integer translates
of ¢. Before going on, let us make some of our terminology more precise.
Throughout this paper, we denote the set of integer translates of ¢ by

Ty={¢(-—m)},cz (2)

We say that T is globally linearly independent (GLI) if 3", _, ¢, ¢(- —n)=0
and ¢,eC implies that ¢, =0 Vn. This condition is also referred to as
“algebraically linearly independent” by some authors.

We also need to define the concept of “support” more carefully, since it
has been used in a variety of ways in the literature. For ¢ € Z(R), the space
of test functions (compactly supported Cw-functions) we define the
support of ¢ in the usual way, as the closure of {xe R : ¢(x)#0}. For dis-
tributions, we use the following standard definition of support (see, e.g.,
[13]). Recall that 2'(R), the dual of Z(R), is the space of Schwartz
distributions.

DerFINITION 1. Let fe Z2'(R), W an open subset of R.

1. We say f vanishes on W if {(f, 9> =0 for all test functions
peED(W).

2. Let U be the union of all open sets W < R on which f vanishes. We
define the support of f by

supp f = U*,

the complement of U in R.

3. We say f'is of minimal support in a space S if f #0 and m(supp f)
<m(supp g) for all nonzero g € S, where m denotes Lebesgue measure.

Note that if f is a continuous function, then the support of f is the
closure of {xeR: f(x)#0}, which coincides with Definition 1. Also note
that it is possible for the support of f to have “holes” in it.

The following can easily be deduced from Result 3.2 of Ron in [12].
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THEOREM 2. Let ¢ be a compactly supported distribution. A distribution
[ in the principal shift-invariant space S =span T, has minimal convex sup-
port if and only if T, is GLI.

When the generator of space S is not minimally supported, Jia has
provided in Theorem 5.1 of [8] a method to find the minimally convex
supported refinable function that generates S (the proof is for dilation fac-
tor N=2, but the proof is straightforward for N> 2). For greater clarity,
we will tend to speak in terms of the GLI of T, rather than the minimal
convex support of ¢.

Two natural questions to ask at this point are whether the support of ¢
could actually have any “holes” in it, and what conditions can be placed
on ¢ to ensure that no such holes exist. Certainly, it is not hard to conjure
up an example of a compactly supported, refinable function which has as
its support the union of disjoint closed intervals, e.g., ¢(X) = x(o. 1)+ X[2.3)-
However, observe that T, is not GLI for this ¢. Lemarié¢ and Malgouyres
provide a nice proof of the following result for L? functions and dilation
factor N=2in [11].

THEOREM 3. Suppose ¢ € L*(R) has minimal (and compact) convex sup-
port in span T, and generates a (two-scale) multiresolution analysis. Then

1. the support of ¢ is an interval, and

2. the restrictions to [0, 1] of the integer translates of ¢ must be
linearly independent.

A few remarks are in order. Since the multiresolution analysis (MRA)
hypothesis is crucial in their proof, it is not obvious that the result holds
for a distribution ¢, even for dilation factor N =2. If N> 2, then there are
more than two wavelet generators implied by the multiresolution analysis
(see [4]). This would certainly complicate the approach of Lemarié and
Malgouyres.

We also note that, in general, the second conclusion of Theorem 3 is
weaker than obtaining local linear independence on arbitrary intervals. To
be precise, we follow Goodman and Lee [7] and say that T is locally
linearly independent on a nontrivial interval (a, b) if 3", ., d,¢(- —k)=0 on
(a, b) and d, e C implies that d, =0 for all k for which ¢(- — k) is not iden-
tically zero on (a, b). When T is locally linearly independent on arbitrary
intervals, we simply say that T is locally linearly independent. It is obvious
that if T, is locally linearly independent, then it is also GLI, but the con-
verse is not true. To further illustrate the connections between the concepts
discussed here, consider the example

p(t)= Ao, 1)(1) +X[1,4)(l)-
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Note that T, is GLI but not locally linearly independent. Also observe that
@ does not have minimal support in span T ,. The function y(x) = ¢(x) —
@(x —1) has minimal support in span T, but its support has a “hole” in
it, and 7', is not GLI. However, ¢ in this example is not refinable. We shall
see that these types of linear independence of T, prove to be equivalent
when ¢ is refinable and compactly supported.

There are two goals of this paper. The first is to show that the ¢ € L*(R)
and MRA hypotheses in Theorem 3 can be replaced by requiring ¢ to be
a refinable and compactly supported distribution. Second, we will prove
this for any integer dilation factor N > 2.

We are now in a position to state our main theorem.

THEOREM 4. Suppose that ¢ € Z'(R) is a refinable, compactly supported
distribution satisfying

M
_Z d(Nx—j),  popm#0, (3)

and such that Ty={¢(- —n)},., is GLL Then

1. supp(¢)=[0, M/(N—1)], and
2. T, is locally linearly independent.

The rest of the paper is outlined as follows. In Section 2 we give some
results crucial for proving Theorem 4 in the case N>2. In Section 3 we
state and prove a chain of lemmata that leads to a proof of Theorem 4.

2. AN INTERPOLATION RESULT

In this section, we shall prove an interpolation result for a system of
generalized exponential functions. For this purpose we first introduce a
result for generalized Vandermonde matrix.

For zeC, let X(z)=(1, z, .., 2"~ ") be an n-dimensional vector, and let
X)(z) be its jth derivative. Assume that {4, .., 4,} eCand {n,, .., n,} €N,
with 3% n;=n. For 1 <j<s, define nx(n; + 1) matrices U, by

Ui: [X(/ll)> R X(ni)(/ll)]

1 0 0
A 1

AN (n=1) A2 e (n=1)(n—ny) AT
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Then the n x n matrix
u=[U,,.., U] (4)

is called a generalized Vandermonde matrix.
The following result for a Vandermonde matrix is known (see [10]).

LEMMA 5. The generalized Vandermonde matrix U in (4) is nonsingular
if and only if 1, % ; for i # j.

We also need the following.

LEmMMA 6. For 1<k, and jeZ, define the integers pi by the induction
that p{=06,;, jeZ, and pj=p{_\+jpl_,. Let P(m,j)=m(m—1)---
(m+1—j), 1<j<m. Then

k
mt="73% P(m,j) pi. (5)

j=1
Proof. We prove the lemma by mathematical induction. When k=1,
(5) is trivial. Under the assumption that (5) is true for kK — 1, we prove it
is true for k. In fact, by py=1, pX=1, and p, =0, /<0 or /> k, we have

k
> P(m, j) p}

j=1

P(m, j)(pl=y+Jjpi_ 1)

~
—_

™M= 1 M=

k
P(m, j—1)m+1—j)pi_\+ Y, P(m,j) jpi_,
j=1

~

1 k—1

The lemma is proved. ||

Lemma 7. For 1 <i<s, define nx (n;+ 1) matrices V; by

1 0 0
7 7 7
vi=| # 22 e |,

AU (=1 a1y
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5

where n=3%";_, (n;+1). The matrix
V=[Vy, ., V] (6)
is nonsingular if and only if
A; #0 Vi, and Ai#E L for i# ] (7)

Proof. Denote the kth column in V; by v* and the jth column in U,
by u’/. By Lemma 6, vk—Z,  PLAw;, 1<k <n, Therefore, detV=
[Ti_, Almitu+1)2 det U. By Lemma 4, we obtain the sufficient and necessary
condltlon (7. 1

COROLLARY 8. Let & =span{ ()", x(A1)", o, X" 71 (A1)% ey AT, X(25)%, ons

x":_l(is)"'}, where A, ;éO Vi, L # 4; for i#jandn=y;5_\n. If fe% and
flk)=0 for k=0,..,n—1, thenf =0 for all xeR.

Proof. Let f(x)=33%_,>"", a,,x( ¥ e . Define a by

_ T
A=(A10s s A1y 15 = A oos a_y,,s,l) .

Then f(k)=0 for k=0,..,n—1 can be rewritten as Va=0 where V is
defined in (6). From Lemma 7 we know that V is nonsingular, whence
a=0. ]

The following “interpolation” proposition is a key ingredient in the proof
of Lemma 15.

ProPOSITION 9. Let

s on—1
xX)=3, ) a;x'(2
i=1 t=0
roomp—1
g(x)= Z z bitxt(iui)x'
i=1 =0

Set p=3>"_1n;, q=2"_,m,. Assume that p,qeN, p>gq,
Ais ; #0 Vi, and Ai# Ay wiFu,  for i#j. (8)
Then
flky=glk)y  for k=0,..,2p—1 9)
if and only if
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Proof. (<) This direction is trivial.
(=) Define C(x) and & by

s n—1 r m;—1

C(x)= Z Z a, x'(A;)"— Z Z by x'(u;)* (11)
)

i=1 t=0 i=1 1t
and

n—19x

7= Span{if’ vy XA e A‘fs ooy X" 1155
YTy e s e X (12)

It is clear that dim ¥ <p+¢<2p. Now C(x)e¥ and C(k)=0 for
k=0, .., 2p—1, so Corollary 8 yields C(x)=0 for all x. The conclusion
(10) follows. |

myp—

HYs s X

3. SOME BASIC LEMMAS

To prove Theorem 4, we shall develop a sequence of lemmata in this sec-
tion. A crucial tool for this approach is a local dual basis for span 7';. The
existence of this basis is ensured by the following theorem due to Ben-Artzi
and Ron [1]. Zhao [14] followed this work and gave an alternate proof
of (10). According to [ 1, 14], an indexed family @ of distributions is called
a locally finite collection if for any test function fe Z(R), (¢, /> =0 for all
but finitely many ¢ € @.

THEOREM 10. Let @ ={¢,},., be a locally finite collection of GLI com-
pactly supported distributions in 2'(R). Then each functional A, in the
algebraic dual basis A= {1;},., of @ is local. Precisely, for every i€ Z there
exists a compact B; = R such that A,(f)=0 whenever supp f N B,= & and
fespan @.

These sets B; suggest the following definition of the support of the func-
tionals 4,.

DerFiNITION 11. Let @ and 4 be given as in Theorem 10 with A€ 4, and
suppose W is an open subset of R.

1. We say A vanishes on W with respect to @ if (i, ¢)> =0 for all
¢ € span @ with m(supp ¢ n W) > 0.

2. Let U be the union of all open sets W< R on which A vanishes
with respect to @. We define the local support of 1 by

Lsupp A= U*.
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For Ae A and i, ke Z we define A(- —i), the ith shift of 4, by

</1( _l)a ¢k> = <A‘9 ¢k+i>9
and A(N/.), the jth dilation of A, by

CUNT), iy =< (N 772)).

The following corollary will be quite useful.

COROLLARY 12. Suppose ¢ € Z'(R) is compactly supported. Let @ and A
be given as in Theorem 10 with ¢,(-)=¢(- —i)Vie Z. Then each A€ A is of
the form A;=2,(-—1i). Moreover, there exists an interval [, ] for which

Lsupp 4o = [a, B].

We now set A,=¢* and write ¢ ;(x)=¢(N“x—j) and ¢} (x)=
¢*(N*x—j). Tt is clear that {¢}} is the dual of {¢,,}. Note that
Lsupp(¢#;) =[N ~“(a+j), N “(+/)]. Define

V= Span{¢kj}jeZ‘
If compactly supported ¢ satisfies (3), we have
. VOC VIC cee,

and it is known (see, e.g., [6]) that

supp(@) = [ 0, N_J .

LEMMA 13. Suppose that ¢ is compactly supported and refinable, and
that Ty is GLI. If fe V, and f(x)=0 on [a, b], then there exists an integer
k=0 for which

S, a1 €V and Sx1b, )€ Ve

Proof.  Since ¢ is compactly supported and T, is GLI, we may assume
there is some M e N for which ¢ satisfies (3). We may also assume WLOG
that there is an Re N for which R> M/(N—1) and Lsupp(¢*)<[0, R].
Choose k so that N "*(3R+1) <b—a. Let L denote the integer for which
NSL—1)<a<N *L, so

a<N *L<N~%L+3R)<b. (13)
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Then from Lsupp(¢f;) =[N %, N ~*(j+ R)] we have
Lsupp(¢f;) =[a, b],  j=L,..,L+2R (14)

Since ¢ is refinable, V', < V, so we can expand f as
f=% by
JjeZ
Since f(x)=0 on [a, b], from (14) we have
Cri= Z ijéjl =¢5(f)=0
jez

for I=L+R,..,L+2R Thus f=f +f, where /=3 _, rc,;¢;; and

=X />L+2RC//¢/</ are both in V. Using supp(¢)<=[0, M/(N—1)],
observe that supp(f;) = (—o0, N X(M/(N—1)+L)]=(—oo, N %(R+L)]

and supp(fz)c[N_"(L+2R), o0). Thus supp(f;) nsupp(f>)= . From
(13) we see that

f.)((foo,a]:f.l and f.)((b,+oc]:.f2»
which finishes the proof. ||
Define the symbol of ¢ satisfying (3) in the usual way, by

1 M
=N & PF

We may write M =NL+w for some we {0, .., N—1}. Define the poly-
nomials

Pj(Z)szLJrj T PNnL—1y4+;ZF +P_/ZL, (15)

where p, =0 for i> M.

It is known that if dilation factor N=2 and T is GLI, then the symbol
of ¢ has no symmetric zeros (see, e.g., [9]). We next show this fact holds
for N>2 and use it to derive a property of the polynomials P; in (15).

LemmA 14. If T, is GLI then

1. the symbol P(z) of ¢ has no N-symmetric zeros, and therefore

2. the polynomials P; in (15), w— N+ 1< j<w, have no common zero
zo #0.
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Proof. For part 1, we employ the method of [2], and suppose for the
sake of contradiction thet ¢ has N-symmetric zeros

Pe—M@+%km/Ny —0  k=0,.,N—1

for some w. In the transform domain, (3) becomes

1 . A
o) = e ().

N
Hence
o 1 ) ~(w+2mn
2 2__ P —i(w + 2mmn)/N
3 o+ 2mP=g 3 P e[ (222
1 Mt ~(w+2kn 2
[ P —i(w + 2km)/N |2 2
LT ) ¢< L mn>
=0,

which contradicts the GLI of T.
For part 2, suppose for the sake of contradiction that the polynomials P;
in (15) have a common zero z, #0. Let z=z, /" denote any of the N roots

of z; . Then

p;zl=Y NP (2 Zz 2o "P;(zy) =0.

J

uMg

Hence P(z) has N symmetric zeros, which contradicts part 1. ||

For our next lemma, we must introduce some new notation. Recall that
M =NL+w for some L and we {0, .., N—1}. Put

M
O=_27 24—
Xy +N—1

and x{ =N "*x©.
LEMMA 15. Suppose that feV,_,, =0 on [x\", N %], and

f%(fw,x‘f’]afX(N*’C,a,JEVk' (16)

Then f=0 on [x} =Y, N %" and

fX(foc,lek)]ﬂ fX(N_k,oc]e kal'
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Proof. Without loss of generality X =1. From (16) we have
f: Z Cl_/¢1/+ Z Clj¢lja (17)
Jj<—n Jj=1

where n=2L +2. Now f €V, implies that

f=2 oo =2 < ) P.kaCOk>¢1,i (18)

Jjez jeZ \keZ

and then

Z pijkCOkZO (19)

keZ
forj=—n+1,..,0.
Let (4{,n{), ... (A7, n’) be the zeros (with multiplicities) of the poly-
nomials P,(z) defined in (15) where >7 n/<L for w—(N—1)<j<w.
From (19) and difference equation theory, there are scalars a/, for which

S; nj—l

Cor = Z Z(AJ (20)
i=1 t=0
fork=—n+1,., —1,and j=w— N+1, .., w. Before continuing, we need
the following.
CLamM. ¢y, =0 fork=—n+1,.., —1.

Proof of Claim. From Y7 n/<Lwehaven—1=2L+1>2%7 n
Also, for any u, v where w— N+ 1<u, v<w we have

s, N ‘1 S, n "1
Y Z avk'(A)< =3 Z at k'(Ah)*
i=1 t=0 i=1 =0
fork=—n+1, .., —1 from (20). Suppose for the sake of contradiction that

not all the ¢,, are zero. We may assume that AY#0 for all u, i, and,
for each pair (u,i), we may assume that al,#0 for some ¢. Then by
Proposition 9,

u v
s, n;—1 s, np—1

Y Y apx'(A)T=3y ) apx'(Z

i=1 t=0 i=1 t=0
for all x. Hence 1Y = 4! and the polynomials (15), w — (N —1) < j<w, have
a common zero. This contradicts Lemma 14. Thus we have ¢y, =0 for
k= —n+1,.., —1. This completes the proof of the claim.
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Now from (18) we have

f= Z C0j¢0j+ Z C0j¢0j7

Jj<—n j=1
where
supp < > cojd)0j> =(—o0, x'"]
j<—n
and
supp < > cojg/)oj> c[N° o).
i=1
Hence
SH ooy =T €V
and

f;{[N’l,w):fX[NU,oc)EVO‘ |
LemMmA 16. If feV, and f=0 on some interval [a, b], then

f.)([b, o0)» f'X(foo,a] € VO'

Proof. Without loss of generality we assume that a<0 and b>0.
Choose k so that a < x} and N ~*<b. Now using Lemmas 13 and 15 and
an inductive argument, we obtain the desired result. ||

We are finally ready for a proof of Theorem 4.

Proof of Theorem 4. Since compactly supported ¢ satisfies (3) and T
is GLI, Theorem 2 says that ¢ has minimal convex support in span 7.

1. As noted in the Introduction, Chui and Wang [3] have shown
that the convex closure of supp(¢) is [0, M/(N—1)]. We need only prove
that there is no nontrivial interval [a, b] < (0, M/(N —1)) for which ¢ =0
on [a, b]. Suppose for the sake of contradiction that such an interval
[a, b] exists. Then by Lemma 16, ¢y .., ., €V, and ¢y, .5 has shorter
support than ¢. This contradicts the minimal convex support of ¢.

2. Let L denote the integer for which L < M/(N —1) < L + 1. Suppose
for the sake of contradiction that T, is not locally llnearly independent on

all nontrivial intervals. Then there exist scalars d,, not all zero, and non-
trivial interval (a, b) for which g(x)=3>, ., d,¢(x—k)=0 on (a, b).
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Shortening (a, b) and using an integer translate of g if necessary, we may
assume (a, b) = (L, L+ 1). Since supp(¢)=[0, M/(N—1)] by part 1,

g(x) = Z di p(x — k)

vanishes on (a, b). Note that supp(g)<[0, L+ M/(N—1)]. But then by
Lemma 16,

EX(—co.a1> &Xb, o) E Vo

Hence one of these functions has support length less than 3(L + M/(N — 1))
<M/(N —1). This contradicts the minimal convex support of ¢. ||

The following corollary concerning minimal support is immediate.

COROLLARY 17. If ¢ is a refinable, compactly supported distribution and
T, is GLI, then ¢ is minimally supported in span T, and supp(¢) is an interval.
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