
File: DISTIL 315901 . By:CV . Date:25:02:98 . Time:14:54 LOP8M. V8.B. Page 01:01
Codes: 3862 Signs: 2109 . Length: 50 pic 3 pts, 212 mm

Journal of Approximation Theory � AT3159

Journal of Approximation Theory 92, 472�485 (1998)

Connections between the Support and Linear
Independence of Refinable Distributions

David Ruch* and Jianzhong Wang*

Department of Mathematics, Sam Houston State University, Huntsville, Texas 77341

Communicated by Rong-Qing Jia

Received June 10, 1996; accepted in revised form March 15, 1997

The purpose of this paper is to study the relationships between the support of a
refinable distribution , and the global and local linear independence of the integer
translates of ,. It has been shown elsewhere that a compactly supported distri-
bution , has globally independent integer translates if and only if , has minimal
convex support. However, such a distribution may have ``holes'' in its support. By
insisting that , # L2(R) and generates a multiresolution analysis, Lemarie� and
Malgouyres have ensured that no such holes can occur. In this article we generalize
this result to refinable distributions. We also give a result on the local linear inde-
pendence of the integer translates of ,. We work with integer dilation factor N�2
throughout this paper. � 1998 Academic Press

1. INTRODUCTION AND BASIC CONCEPTS

This paper investigates the support of a refinable distribution , and the
global and local linear independence of the integer translates of ,. These
ideas are fundamental in wavelet theory and have been studied con-
siderably elsewhere (e.g., [3, 6, 11, 7, 9]). We say that a distribution , is
refinable with dilation factor N�2 if there exist scalars pk for which ,
satisfies

,(x)= :
k # Z

pk ,(Nx&k). (1)

We use the term refinable rather than scaling distribution to emphasize that
we do not assume that , is an L p function; , need not generate a multi-
resolution analysis (MRA) for our results (see [4] for a detailed discussion
of MRAs). We will assume throughout that , is compactly supported; see
[5] for a discussion of this condition.
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Deslauriers and Dubuc [6] showed that if , is a refinable, compactly
supported distribution and pk=0 for k<0 and for k>M in (1) then , has
its support in [0, M�(N&1)]. Throughout this paper, we say that the
convex support of , is the closure of the convex hull of supp(,). For
N=2, Chui and Wang [3] have shown that the convex support of , is
[0, M�(N&1)], and their proof is easily generalized to the case N>2.

It has been shown that the convex support of a compactly supported
distribution , is related to the linear independence of the integer translates
of ,. Before going on, let us make some of our terminology more precise.
Throughout this paper, we denote the set of integer translates of , by

T,=[,( } &n)]n # Z . (2)

We say that T, is globally linearly independent (GLI) if �n # Z cn,( } &n)=0
and cn # C implies that cn=0 \n. This condition is also referred to as
``algebraically linearly independent'' by some authors.

We also need to define the concept of ``support'' more carefully, since it
has been used in a variety of ways in the literature. For . # D(R), the space
of test functions (compactly supported C �-functions), we define the
support of . in the usual way, as the closure of [x # R : .(x){0]. For dis-
tributions, we use the following standard definition of support (see, e.g.,
[13]). Recall that D$(R), the dual of D(R), is the space of Schwartz
distributions.

Definition 1. Let f # D$(R), W an open subset of R.

1. We say f vanishes on W if ( f, .)=0 for all test functions
. # D(W ).

2. Let U be the union of all open sets W/R on which f vanishes. We
define the support of f by

supp f =U c,

the complement of U in R.

3. We say f is of minimal support in a space S if f {0 and m(supp f )
�m(supp g) for all nonzero g # S, where m denotes Lebesgue measure.

Note that if f is a continuous function, then the support of f is the
closure of [x # R : f (x){0], which coincides with Definition 1. Also note
that it is possible for the support of f to have ``holes'' in it.

The following can easily be deduced from Result 3.2 of Ron in [12].
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Theorem 2. Let , be a compactly supported distribution. A distribution
f in the principal shift-invariant space S=span T, has minimal convex sup-
port if and only if Tf is GLI.

When the generator of space S is not minimally supported, Jia has
provided in Theorem 5.1 of [8] a method to find the minimally convex
supported refinable function that generates S (the proof is for dilation fac-
tor N=2, but the proof is straightforward for N>2). For greater clarity,
we will tend to speak in terms of the GLI of T, rather than the minimal
convex support of ,.

Two natural questions to ask at this point are whether the support of ,
could actually have any ``holes'' in it, and what conditions can be placed
on , to ensure that no such holes exist. Certainly, it is not hard to conjure
up an example of a compactly supported, refinable function which has as
its support the union of disjoint closed intervals, e.g., ,(x)=/[0, 1)+/[2, 3) .
However, observe that T, is not GLI for this ,. Lemarie� and Malgouyres
provide a nice proof of the following result for L2 functions and dilation
factor N=2 in [11].

Theorem 3. Suppose , # L2(R) has minimal (and compact) convex sup-
port in span T, and generates a (two-scale) multiresolution analysis. Then

1. the support of , is an interval, and

2. the restrictions to [0, 1] of the integer translates of , must be
linearly independent.

A few remarks are in order. Since the multiresolution analysis (MRA)
hypothesis is crucial in their proof, it is not obvious that the result holds
for a distribution ,, even for dilation factor N=2. If N>2, then there are
more than two wavelet generators implied by the multiresolution analysis
(see [4]). This would certainly complicate the approach of Lemarie� and
Malgouyres.

We also note that, in general, the second conclusion of Theorem 3 is
weaker than obtaining local linear independence on arbitrary intervals. To
be precise, we follow Goodman and Lee [7] and say that T, is locally
linearly independent on a nontrivial interval (a, b) if �k # Z dk ,( } &k)=0 on
(a, b) and dk # C implies that dk=0 for all k for which ,( } &k) is not iden-
tically zero on (a, b). When T, is locally linearly independent on arbitrary
intervals, we simply say that T, is locally linearly independent. It is obvious
that if T, is locally linearly independent, then it is also GLI, but the con-
verse is not true. To further illustrate the connections between the concepts
discussed here, consider the example

.(t)=t/[0, 1)(t)+/[1, 4)(t).
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Note that T. is GLI but not locally linearly independent. Also observe that
. does not have minimal support in span T. . The function �(x)=.(x)&
.(x&1) has minimal support in span T. , but its support has a ``hole'' in
it, and T� is not GLI. However, . in this example is not refinable. We shall
see that these types of linear independence of T, prove to be equivalent
when , is refinable and compactly supported.

There are two goals of this paper. The first is to show that the , # L2(R)
and MRA hypotheses in Theorem 3 can be replaced by requiring , to be
a refinable and compactly supported distribution. Second, we will prove
this for any integer dilation factor N�2.

We are now in a position to state our main theorem.

Theorem 4. Suppose that , # D$(R) is a refinable, compactly supported
distribution satisfying

,(x)= :
M

j=0

pj ,(Nx& j ), p0 pM{0, (3)

and such that T,=[,( } &n)]n # Z is GLI. Then

1. supp(,)=[0, M�(N&1)], and
2. T, is locally linearly independent.

The rest of the paper is outlined as follows. In Section 2 we give some
results crucial for proving Theorem 4 in the case N>2. In Section 3 we
state and prove a chain of lemmata that leads to a proof of Theorem 4.

2. AN INTERPOLATION RESULT

In this section, we shall prove an interpolation result for a system of
generalized exponential functions. For this purpose we first introduce a
result for generalized Vandermonde matrix.

For z # C, let X(z)=(1, z, ..., zn&1)T be an n-dimensional vector, and let
X ( j )(z) be its j th derivative. Assume that [*1 , ..., *s] # C and [n1 , ..., ns] # N,
with �s

j=1 nj =n. For 1� j�s, define n_(nj +1) matrices Uj by

Ui=[X(*1), ..., X (nj)(*1)]

1 0 } } } 0

*i 1 } } } 0

=_ *2
i 2*i } } } 0 & .

b b b
*n&1

i (n&1) *n&2
i } } } (n&1) } } } (n&nj ) *n&1&nj

i
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Then the n_n matrix

U=[U1 , ..., Us] (4)

is called a generalized Vandermonde matrix.
The following result for a Vandermonde matrix is known (see [10]).

Lemma 5. The generalized Vandermonde matrix U in (4) is nonsingular
if and only if *i{*j for i{ j.

We also need the following.

Lemma 6. For 1�k, and j # Z, define the integers p j
k by the induction

that p j
1=$1 j , j # Z, and p j

k= p j&1
k&1+ jp j

k&1 . Let P(m, j )=m(m&1) } } }
(m+1&j ), 1� j�m. Then

mk= :
k

j=1

P(m, j ) p j
k . (5)

Proof. We prove the lemma by mathematical induction. When k=1,
(5) is trivial. Under the assumption that (5) is true for k&1, we prove it
is true for k. In fact, by p1

k=1, pk
k=1, and pl

k=0, l�0 or l>k, we have

:
k

j=1

P(m, j ) p j
k= :

k

j=1

P(m, j )( p j&1
k&1+ jp j

k&1)

= :
k

j=1

P(m, j&1)(m+1& j ) p j&1
k&1+ :

k

j=1

P(m, j ) jp j
k&1

= :
k&1

j=1

P(m, j )(m&j ) p j
k&1+ :

k&1

j=1

P(m, j ) jp j
k&1

=m :
k&1

j=1

P(m, j ) p j
k&1

=mk

The lemma is proved. K

Lemma 7. For 1�i�s, define n_(ni+1) matrices Vi by

1 0 } } } 0

*i *i } } } *i

Vi=_ *2
i 2*2

i } } } (2)ni *2
i & ,

b b b
*n&1

i (n&1) *n&1
i } } } (n&1)ni *n&1

i
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where n=�s
i=1 (ni+1). The matrix

V=[V1 , ..., Vs] (6)

is nonsingular if and only if

*i{0 \i, and *i{*j for i{ j. (7)

Proof. Denote the k th column in Vi by vk and the j th column in Ui

by u j. By Lemma 6, vk=�k
j=1 p j

k * juj , 1�k�ni . Therefore, det V=
>s

i=1 * (ni (ni+1))�2
i det U. By Lemma 4, we obtain the sufficient and necessary

condition (7). K

Corollary 8. Let S=span[(*1)x, x(*1)x, ..., xn1&1(*1)x, ..., *x
s , x(*s)

x, ...,
xns&1(*s)

x], where *i{0 \i, *i{*j for i{ j, and n=�s
i=1 ni . If f # S and

f (k)=0 for k=0, ..., n&1, then f (x)=0 for all x # R.

Proof. Let f (x)=�s
i=1 �ni&1

t=0 ait xt(*i)
x # S. Define a by

a=(a10 , ..., a1n1&1 , ..., as0 , ..., asns&1)T.

Then f (k)=0 for k=0, ..., n&1 can be rewritten as Va=0 where V is
defined in (6). From Lemma 7 we know that V is nonsingular, whence
a=0. K

The following ``interpolation'' proposition is a key ingredient in the proof
of Lemma 15.

Proposition 9. Let

f (x)= :
s

i=1

:
ni&1

t=0

ait xt(*i)
x

g(x)= :
r

i=1

:
mi&1

t=0

bit xt(+i)
x.

Set p=�s
i=1 ni , q=�r

i=1 mi . Assume that p, q # N, p�q,

*i , +i{0 \i, and *i{*j , +i{+j for i{ j. (8)

Then

f (k)=g(k) for k=0, ..., 2p&1 (9)

if and only if

f (x)=g(x) \x. (10)
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Proof. (o) This direction is trivial.

(O) Define C(x) and S by

C(x)= :
s

i=1

:
ni&1

t=0

ait xt(*i)
x& :

r

i=1

:
mi&1

t=0

bit xt(+i)
x (11)

and

S=span[*x
1 , ..., xn1&1*x

1 , ..., *x
s , ..., xns&1*s ,

+x
1 , ..., xm1&1+x

1 , ..., +x
r , ..., xmr&1+x

r ]. (12)

It is clear that dim S� p+q�2p. Now C(x) # S and C(k)=0 for
k=0, ..., 2p&1, so Corollary 8 yields C(x)=0 for all x. The conclusion
(10) follows. K

3. SOME BASIC LEMMAS

To prove Theorem 4, we shall develop a sequence of lemmata in this sec-
tion. A crucial tool for this approach is a local dual basis for span T, . The
existence of this basis is ensured by the following theorem due to Ben-Artzi
and Ron [1]. Zhao [14] followed this work and gave an alternate proof
of (10). According to [1, 14], an indexed family 8 of distributions is called
a locally finite collection if for any test function f # D(R), (., f )=0 for all
but finitely many . # 8.

Theorem 10. Let 8=[,i ]i # Z be a locally finite collection of GLI com-
pactly supported distributions in D$(R). Then each functional *i in the
algebraic dual basis 4=[*i ]i # Z of 8 is local. Precisely, for every i # Z there
exists a compact Bi/R such that *i ( f )=0 whenever supp f & Bi=< and
f # span 8.

These sets Bi suggest the following definition of the support of the func-
tionals *i .

Definition 11. Let 8 and 4 be given as in Theorem 10 with * # 4, and
suppose W is an open subset of R.

1. We say * vanishes on W with respect to 8 if (*, ,)=0 for all
, # span 8 with m(supp , & W )>0.

2. Let U be the union of all open sets W/R on which * vanishes
with respect to 8. We define the local support of * by

Lsupp *=U c.
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For * # 4 and i, k # Z we define *( } &i ), the i th shift of *, by

(*( } &i ), ,k) =(*, ,k+i) ,

and *(N j } ), the j th dilation of *, by

(*(N j } ), ,k)=(*, ,k(N &j } )).

The following corollary will be quite useful.

Corollary 12. Suppose , # D$(R) is compactly supported. Let 8 and 4
be given as in Theorem 10 with ,i ( } )=,( } &i ) \i # Z. Then each *i # 4 is of
the form *i=*0( } &i ). Moreover, there exists an interval [:, ;] for which
Lsupp *0/[:, ;].

We now set *0=,* and write ,kj (x)=,(N kx&j ) and ,*kj (x)=
,*(N kx&j ). It is clear that [,*kj ] is the dual of [,kj ]. Note that
Lsupp(,*kj)/[N &k(:+j ), N &k(;+j )]. Define

Vk=span[,kj ] j # Z .

If compactly supported , satisfies (3), we have

} } } /V0/V1/ } } } ,

and it is known (see, e.g., [6]) that

supp(,)/_0,
M

N&1& .

Lemma 13. Suppose that , is compactly supported and refinable, and
that T, is GLI. If f # V0 and f (x)=0 on [a, b], then there exists an integer
k�0 for which

f/(&�, a] # Vk and f/[b, �) # Vk .

Proof. Since , is compactly supported and T, is GLI, we may assume
there is some M # N for which , satisfies (3). We may also assume WLOG
that there is an R # N for which R�M�(N&1) and Lsupp(,*)/[0, R].
Choose k so that N &k(3R+1)<b&a. Let L denote the integer for which
N &k(L&1)<a�N &kL, so

a�N &kL<N &k(L+3R)<b. (13)
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Then from Lsupp(,*kj )/[N &kj, N &k( j+R)] we have

Lsupp(,*kj )/[a, b], j=L, ..., L+2R. (14)

Since , is refinable, V0/Vk so we can expand f as

f = :
j # Z

ckj ,kj .

Since f (x)=0 on [a, b], from (14) we have

ckl= :
j # Z

ckj $jl =,*kl ( f )=0

for l=L+R, ..., L+2R. Thus f = f1+ f2 where f1=� j<L+R ckj ,kj and
f2=� j>L+2R ckj ,kj are both in Vk . Using supp(,)/[0, M�(N&1)],
observe that supp( f1)/(&�, N&k(M�(N&1)+L)]/(&�, N&k(R+L)]
and supp( f2)/[N &k(L+2R), �). Thus supp( f1) & supp( f2)=<. From
(13) we see that

f/(&�, a]= f1 and f/(b, +�]= f2 ,

which finishes the proof. K

Define the symbol of , satisfying (3) in the usual way, by

P(z)=
1
N

:
M

j=0

pj z j.

We may write M=NL+w for some w # [0, ..., N&1]. Define the poly-
nomials

Pj (z)= pNL+j + pN(L&1)+j z+ } } } + pj zL, (15)

where pi=0 for i>M.
It is known that if dilation factor N=2 and T, is GLI, then the symbol

of , has no symmetric zeros (see, e.g., [9]). We next show this fact holds
for N�2 and use it to derive a property of the polynomials Pj in (15).

Lemma 14. If T, is GLI then

1. the symbol P(z) of , has no N-symmetric zeros, and therefore

2. the polynomials Pj in (15), w&N+1� j�w, have no common zero
z0{0.
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Proof. For part 1, we employ the method of [2], and suppose for the
sake of contradiction thet , has N-symmetric zeros

P(e&i((|+2k?)�N ))=0, k=0, ..., N&1

for some |. In the transform domain, (3) becomes

,� (|)=
1
N

P(e&i|�N ) ,� \|
N+ .

Hence

:
m # Z

|,� (|+2m?)| 2=
1
N

:
m # Z

|P(e&i(|+2m?)�N )| 2 } ,� \|+2m?
N + }

2

=
1
N

:
N&1

k=0

:
m # Z

|P(e&i(|+2k?)�N )| 2 },� \|+2k?
N

+2m?+ }
2

=0,

which contradicts the GLI of T, .
For part 2, suppose for the sake of contradiction that the polynomials Pj

in (15) have a common zero z0{0. Let z=z&1�N
0 denote any of the N roots

of z&1
0 . Then

N } P(z)= :
M

j=0

pj z j=:
j

zNL+ jPj (z&N )=:
j

z jz&L
0 Pj (z0)=0.

Hence P(z) has N symmetric zeros, which contradicts part 1. K

For our next lemma, we must introduce some new notation. Recall that
M=NL+w for some L and w # [0, ..., N&1]. Put

x (0)
L =&2L&2+

M
N&1

and x (k)
L =N &kx (0)

L .

Lemma 15. Suppose that f # Vk&1 , f =0 on [x (k)
L , N &k], and

f/ (&�, x L
(k)] , f/ (N&k, �] # Vk . (16)

Then f =0 on [x (k&1)
L , N &k+1] and

f/ (&�, x L
(k)] , f/ (N &k, �] # Vk&1.
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Proof. Without loss of generality k=1. From (16) we have

f = :
j�&n

c1 j ,1 j + :
j �1

c1 j ,1 j , (17)

where n=2L+2. Now f # V0 implies that

f = :
j # Z

c0 j ,0 j = :
j # Z

\ :
k # Z

pj&Nk c0k+ ,1 j (18)

and then

:
k # Z

pj&Nk c0k=0 (19)

for j=&n+1, ..., 0.
Let (* j

1 , n j
1), ..., (* j

s , n j
s ) be the zeros (with multiplicities) of the poly-

nomials Pj (z) defined in (15) where �sj
i=1

n j
i �L for w&(N&1)� j�w.

From (19) and difference equation theory, there are scalars a j
it for which

c0k= :
sj

i=1

:
ni

j&1

t=0

a j
it kt(* j

i )k (20)

for k=&n+1, ..., &1, and j=w&N+1, ..., w. Before continuing, we need
the following.

Claim. c0k=0 for k=&n+1, ..., &1.

Proof of Claim. From �sj
i=1 n j

i �L we have n&1=2L+1�2 �sj
i=1 n j

i .
Also, for any u, v where w&N+1�u, v�w we have

:
su

i=1

:
ni

u&1

t=0

au
it kt(*u

i )k= :
sv

i=1

:
ni

v&1

t=0

av
it kt(*v

i )k

for k=&n+1, ..., &1 from (20). Suppose for the sake of contradiction that
not all the c0k are zero. We may assume that *u

i {0 for all u, i, and,
for each pair (u, i ), we may assume that au

it{0 for some t. Then by
Proposition 9,

:
su

i=1

:
ni

u&1

t=0

au
it xt(*u

i )x= :
sv

i=1

:
ni

v&1

t=0

av
it xt(*v

i )
x

for all x. Hence *u
i =*v

i and the polynomials (15), w&(N&1)� j�w, have
a common zero. This contradicts Lemma 14. Thus we have c0k=0 for
k=&n+1, ..., &1. This completes the proof of the claim.
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Now from (18) we have

f = :
j�&n

c0 j ,0 j + :
j �1

c0 j ,0 j ,

where

supp \ :
j�&n

c0 j ,0 j+/(&�, x (0)
L ]

and

supp \ :
j �1

c0 j ,0 j+/[N 0, �).

Hence

f/ (&�, x L
(1)]= f/ (&�, x L

(0)] # V0

and

f/[N&1, �)= f/[N 0, �) # V0 . K

Lemma 16. If f # V0 and f =0 on some interval [a, b], then

f/[b, �) , f/(&�, a] # V0 .

Proof. Without loss of generality we assume that a�0 and b>0.
Choose k so that a�x (k)

L and N &k�b. Now using Lemmas 13 and 15 and
an inductive argument, we obtain the desired result. K

We are finally ready for a proof of Theorem 4.

Proof of Theorem 4. Since compactly supported , satisfies (3) and T,

is GLI, Theorem 2 says that , has minimal convex support in span T, .

1. As noted in the Introduction, Chui and Wang [3] have shown
that the convex closure of supp(,) is [0, M�(N&1)]. We need only prove
that there is no nontrivial interval [a, b]/(0, M�(N&1)) for which ,=0
on [a, b]. Suppose for the sake of contradiction that such an interval
[a, b] exists. Then by Lemma 16, ,/(&�, a] # V0 and ,/(&�, a] has shorter
support than ,. This contradicts the minimal convex support of ,.

2. Let L denote the integer for which L<M�(N&1)�L+1. Suppose
for the sake of contradiction that T, is not locally linearly independent on
all nontrivial intervals. Then there exist scalars dk , not all zero, and non-
trivial interval (a, b) for which g(x)=�k # Z dk ,(x&k)=0 on (a, b).
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Shortening (a, b) and using an integer translate of g if necessary, we may
assume (a, b)/(L, L+1). Since supp(,)=[0, M�(N&1)] by part 1,

g~ (x)= :
L

k=0

dk ,(x&k)

vanishes on (a, b). Note that supp(g~ )/[0, L+M�(N&1)]. But then by
Lemma 16,

g~ /(&�, a] , g~ /[b, �) # V0 .

Hence one of these functions has support length less than 1
2(L+M�(N&1))

<M�(N&1). This contradicts the minimal convex support of ,. K

The following corollary concerning minimal support is immediate.

Corollary 17. If , is a refinable, compactly supported distribution and
T, is GLI, then , is minimally supported in span T, and supp(,) is an interval.
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